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Evaporative Evolution of Brines from Synthetic Topopah Spring Tuff Pore Water, 
Yucca Mountain, NV 

Maureen Alai and Susan Carroll 
Lawrence Livermore National Laboratory, Livermore CA 94550 

Abstract 
We are investigating the evaporation of pore water representative of the designated high- 
level-nuclear-waste repository at Yucca Mountain, NV to predict the range of brine 
compositions that may contact waste containers. These brines could form potentially 
corrosive thin films on the containers and impact their long-term integrity. Here we 
report the geochemistry of a relatively complex synthetic Topopah Spring Tuff pore 
water that was progressively evaporated in a series of experiments. The experiments 
were conducted in a closed vessel, heated to 95”C, and purged with atmospheric COz. 
Aqueous samples of the evaporating solution were taken and analyzed to determine the 
evolving water chemistry, and the final solid precipitate was analyzed by X-ray 
diffraction. 

The synthetic Topopah Spring Tuff water evolved towards a complex brine that contains 
about 3 mol% SO,, and 2 mol% Ca, 3 mol% K, 5 mol% NO,, 40 mol% C1, and 47 mol% 
Na. Trends in the solution data and identification of CaSO, solids (anhydrite and 
bassanite) suggest that fluorite, carbonate, sulfate, and Mg-silicate precipitation minimize 
the corrosion potential of “sulfate type pore water” by removing F, Ca, and Mg during 
the early stages of evaporation 

Introduction 
Evaporative concentration experiments reported here investigate the evolution of the pore 
water found in rock formations within (Topopah Spring Tuff) and above (Paintbrush) the 
designated high-level-nuclear-waste repository at Yucca Mountain, NV. The primary 
goal of our experiments is to provide constraints on water chemistries and salt 
compositions that are likely to contact and react with the high-level waste canisters and 
any engineered canister shields. Once completed, our experimental work will also 
provide much needed data to test and validate the development of Pitzer data base and 
geochemical codes used by the Engineered Barrier System and the Unsaturated Zone to 
model the long-term performance of the repository. 

The measured compositions of Yucca Mountain pore water vary, but can be generally 
placed into three types of waters that should evolve towards specific brine chemistry as 
the waters evaporate as the repository heats up (Figure 1): 

1. Carbonate brine with alkaline pH Na-COS-C1-SO, 
2. Sulfate brine with near neutral pH Na-Mg-C1-SO, 
3. Ca-chloride brine with near neutral pH Na-Ca-Mg-C1 
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Paintbrush (Yang et al. 1996) 
Topopah Spring Tuff (Yang et al. 1996) 

0 Topopah Spring Tuff, Charge Balance on HCO3- 
(Peterman et al, 2002) 

0 Topopah Spring Tuff, Charge Balance on HCO3- 
HD-Perm (Bechtel SAIC Company, 2001) 

Ca++ 

SO4- HCO3- Equivalent % 

Figure 1. Yucca Mountain pore waters as measured by Peterman and Yang (equivalent 
%) . 

Of concern to the Yucca Mountain Program, is that some of these pore waters could 
evolve to potentially corrosive CaCl,, MgCI,, and fluoride brines as well as the more 
benign carbonate and sulfate brines. The simple ratios of Ca, SO4 and HCO, in Figure 1 
illustrate the dominant carbonate and sulfate chemical divides that occur as waters 
evaporate (Eugster and Hardie, 1970; Eugster and Hardie, 1978, Li et al., 1997), but 
Figure 1 does not show important chemical divides for Mg, Si, or F. Nor does is show 
the relative magnitude of these salts to other major ions such as NO;, which have shown 
to inhibit corrosion in mixed chloride-nitrate solutions (Brossia and Kelly, 1998). 
Temperature will also impact the evolution of the pore water. Recent modeling of Yucca 
Mountain pore water within the carbonate brine field at 25"C, evolved towards potentially 
corrosive Ca-chloride brines at 95"C, and not towards a more benign carbonate brine as 
predicted by Figure 1 (Bechtel SAIC Company, 2001). 

Here we report our results for the evaporation of a synthetic Topopah Spring Tuff pore 
water at 95°C over a concentration range of l x  to -4OOx. 

Experimental Methods 
Table 1 shows the chemical composition of the synthetic Topopah Spring Tuff pore water 
that was evaporated in three legs of this experiment. The chemical composition of the 
second leg was based on the brine composition towards the end of the first leg, and the 
composition of the third leg was based on the brine composition towards the end of the 
second leg. The solutions were prepared using analytical grade salts. Evaporation was 
conducted in a vented vessel heated to 95OC, and purged with atmospheric CO,. The 
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extent of evaporation was monitored from the condensed water vapor vented from the 
reaction vessel. Periodic samples of the evaporating solution were filtered and analyzed 
Table 1 Starting compositions for the evaporation of a synthetic Topopah Spring Tuff 
pore water. 

Leg 2 

K+ 1.76 x lo4 1.63 io-, 5.81 io-, 6.47 10-3 

m++ 1.01 x 10-3 6.48 x io-, 6.04 x 10-4 1.05 10-3 
so, - 1.23 x 10” 1.85 x 10” 4.64 10-3 2.22 x 
SiO, 1.39 x 10” 9.21 x io-, 1.98 x 10” 2.22 x 
Ca” 1.57 x 1.25 x 4.68 x 2.15 x lo-, 
Na’ 2.84 x 10” 3.04 x 1.10 x 1.10 x 10-l 
HCO, 7.93 x 10-4 3.11 x lo4 1.59 x 1 0 - ~  not analyzed 
c1- 3.26 x 10” 3.31 10-3 9.79 10-3 1.04 x lo-’ 

NO, 3.53 x lo4 3.94 io-, 1.32 10-3 1.17 x 

to determine the evolving water chemistry. pH was measured at room temperature with a 
combination electrode, total dissolved carbon was measured with an infrared carbon 
analyzer, dissolved Ca, Mg, Si, and Na were measured with an inductively coupled 
plasma-atomic emission spectrometer, and dissolved K was measured using an atomic 
absorption spectrophotometer, and F, C1, NO,, and SO, anions were determined using ion 
chromatography. The solid precipitate was collected at the end of each leg of the 
experiment and analyzed by X-ray diffraction. 

Results and Discussion 
Our experimental results are summarized in Figures 2 and 3. The pore water composition 
appears to be controlled by the precipitation of a small amount of calcite removing all 
measurable dissolved CO, and the precipitation of anhydrite (CaSO,) andor bassanite 
(2CaS0,*H20). These are the dominant chemical reactions predicted by chemical divide 
theory, which forms the basis for the Ca:HCO,:SO, diagrams in Figures 1 and 2. Figure 
2 shows the evolution of the water as it evaporated. The pore water evolved towards a 
SO, brine as predicted by chemical divide theory based on its initial Ca:SO,:HCO, ratio. 
At the conclusion of the third leg (~OOX), the water composition had evolved to molar 
Ca:SO, = 4258. It is important to note that sulfate concentrations will be minor 
compared to the concentration of Na, C1, and NO, which have not be removed by mineral 
precipitation. At the conclusion of the third leg of this experiment, molar equivalents of 
Na and C1 were much greater than that of Ca and SO, (Na:K:Ca:Cl:SO,:NO, = 
47:3:2:40:3:5). Figure 2 also shows that a J-13 well water and a different Yucca 
Mountain unsaturated zone pore water (Rosenberg et al., 2001) evolve towards their 
respective Na-carbonate and Ca-chloride brines indicated by their initial Ca:SO,:HCO, 
ratios. Although our results coupled with previous evaporation experiments (Rosenberg 
et al., 2001) suggest that Ca:SO,:HCO, ternary diagrams can be used as a rough 
prediction of brines formed from dilute Yucca Mountain pore water, they do not capture 
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all of the important chemical divides that could affect the evolution of Yucca Mountain 
pore water such as fluorite and Mg-Silicate precipitation. 

0 5-13 (Rosenberg et al, 2001) 
0 UZ Pore Water (Rosenberg et al, 2001) 

A Leg2 

Equivalent % 

Figure 2. Evolution of a synthetic Topopah Spring Tuff pore water. 

Figure 3 shows the evolution of the solution composition for all of the major elements 
comparing their relative concentrations to the concentration factor. The concentration 
factor is directly calculated from the amount of condensed water vapor during the 
evaporation experiment. Elements exhibit conservative concentration if they plot on the 
1: 1 correlation line and they exhibit removal by mineral precipitation if they plot below 
this line. The error bars in Figure 3 represent a 10% experimental uncertainty that 
reflects difficulties in synthesizing the “exact” solution composition from the end of one 
leg of the experiment to the beginning of the next leg. Figure 3 clearly shows the 
removal of Si, Ca, Mg, and SO,. Amorphous silica precipitation and a Mg-silicate phase 
most likely controls the dissolved Si and Mg concentrations, which formed in the initial 
solution for leg 3. Dissolved SO, and Ca concentrations are controlled by sulfate 
precipitation as bassanite and/or anhydrite, which were identified in the X-ray diffraction 
patterns. In agreement with our results, Hardie and Eugster (1970) reported calcite, 
sepiolite (Mg8~Si,,0,0(OH),o*6H,0), and gypsum(Ca,S04~2H,0) as early precipitates in 
saline lakes. The precipitation of both Mg and Ca as sulfate and/or silicates are important 
geochemical controls that will minimize the relative proportion of potentially corrosive 
Mg-chloride and Ca-chloride brines. The initial solution contained trace amounts of F 
which were rapidly removed from solution (data not shown) presumably as highly 
insoluble fluorite (CaF,). This is an important geochemical control for F, a highly 
corrosive anion, and suggests that it will not threaten the integrity of the waste canisters 
or the drip shields in the repository. Figure 3b also suggests that there is some 
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precipitation of C1 and NO, above the predicted uncertainty. This mostly likely 
represents evaporation along the vessel walls as the water level drops, and the 
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Figure 3. Evolution of a synthetic Topopah Spring pore water plotted as measured 
samp1e:initial concentrations versus the concentration factor (see text for additional 
explanation). 

experimental uncertainty reflecting the difficulty in synthesizing the exact solution from 
one leg to the other. 

Conclusions 
Our work shows that fluorite, carbonate, sulfate, and Mg-silicate precipitation minimize 
the corrosion potential of “sulfate type pore water” by removing F, Ca, and Mg during 
the early stages of evaporation, yielding a Na-K-Cl-SO,-NO, brine. Future work 
includes continued evaporation of this water and other sulfate, calcium chloride, and 
carbonate waters indicated in Figure 1 from 1 X to 10,000 X to determine Yucca 
Mountain pore water evolution during evaporation and to test the Pitzer data base and 
geochemical models. 
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